- 1. Let $\mathbf{x} = \langle x_1, y_1 \rangle$ and $\mathbf{y} = \langle x_2, y_2 \rangle$ be given vectors.
 - a. Find the area of the Parallelogram below using only the components of vectors \mathbf{x} and \mathbf{y} .

- b. Explain how the component form of the cross product is related to part a above
- c. Find the area of the parallelogram as a function of θ and the two norms of vectors x and y.
- d. Derive the sine formula for the cross product from the component form of the cross product.

2.	Т	F	For any vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$, $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = 0$.
3.	Т	F	Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Then $(\mathbf{u} - \mathbf{v}) \times (\mathbf{u} + \mathbf{v}) = 2 \mathbf{u} \times \mathbf{v}$

4. Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ are orthogonal vectors. Find the magnitude of $\mathbf{u} \times \mathbf{v}$.

5. Find a vector normal to $\langle 8, 0, 3 \rangle$ and $\langle -7, 1, 2 \rangle$.

6. Find the area of the triangle with vertices at the points (0,0,0), (1,0,-1) and (1,-1,2).

7. Consider the diagram below. Suppose we want to project vector \mathbf{y} onto the direction of \mathbf{x} . Use this information to derive the formula for the projection of \mathbf{y} onto \mathbf{x} .

