Name : \qquad
\qquad

1. Let $\mathbf{x}=\left\langle x_{1}, y_{1}\right\rangle$ and $\mathbf{y}=\left\langle x_{2}, y_{2}\right\rangle$ be given vectors.
a. Find the area of the Parallelogram below using only the components of vectors \mathbf{x} and \mathbf{y}.

b. Explain how the component form of the cross product is related to part a above
c. Find the area of the parallelogram as a function of θ and the two norms of vectors \mathbf{x} and \mathbf{y}.
d. Derive the sine formula for the cross product from the component form of the cross product.
2. $\mathrm{T} \quad \mathrm{F} \quad$ For any vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3},(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=0$.
3. $\mathrm{T} \quad \mathrm{F} \quad$ Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$. Then $(\mathbf{u}-\mathbf{v}) \times(\mathbf{u}+\mathbf{v})=2 \mathbf{u} \times \mathbf{v}$
4. Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$ are orthogonal vectors. Find the magnitude of $\mathbf{u} \times \mathbf{v}$.
5. Find a vector normal to $\langle 8,0,3\rangle$ and $\langle-7,1,2\rangle$.
6. Find the area of the triangle with vertices at the points $(0,0,0),(1,0,-1)$ and $(1,-1,2)$.
7. Consider the diagram below. Suppose we want to project vector \mathbf{y} onto the direction of \mathbf{x}. Use this information to derive the formula for the projection of \mathbf{y} onto \mathbf{x}.

